
B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 1http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

In this paper we introduce Phylograph; a
multifunctional tree editor particularly indi-
cated for large trees. The application reads
trees up to 1000-1200 leaves and constructs
and edits graph drawings in different layouts.
Phylograph roots the tree using as outgroup a
single leave or a whole branch, simply via the
computer mouse. The tool incorporates a wide
set of functions to expand, compress, invert,
and/or rotate a tree. Phylograph allows the
cutting of branches and the incorporation of
decorations such as tags, brackets, boxes, and
arrows. The tool also allows the user to save
the tree drawing as a re-editable project and
offers the choice of various exportable image
formats, including a HTML format suited to da-
tabases. Phylograph is a Java application. This
means that the tool runs on personal compu-
ters as a standalone program. We also present
here an overview of the algorithms used by
Phylograph to represent the tree drawings.

Keywords: Large trees | Multifunctional Editing | Java | Layout algorithms

INTRODUCTION
Phylogenetic analyses reconstruct, based on similarity sco-

rinPhylogenetic analyses reconstruct the evolutionary history
of biological species, genes, and proteins based on similarity
scoring. A phylogenetic tree usually represents the evolutionary
distances among the Operative taxonomical Units (OTUs),
which are represented by leaves. Phylogenetic analyses usua-
lly save the outputs in two of the most commonly accepted
formats - nexus (1) or newick (URL 2) – To phylogenetically
interpret a tree users graphically represent it as a branching
graph, where each node with descendants represents the most
recent common ancestor of the descendants, and edge leng-
ths correspond to time or distance estimates. This is, Phylo-
genetic trees constitute a particular case of graph theory (2)
where OTUs are called leaves and branches not representing
leaves are called nodes. Children of the same parent are ca-
lled siblings. According to graph theory, a tree T (V,E) is an
abstract structure used to describe a limited set of nodes or
vertices (V) connected by edges (E) or segments not allowed
to overcross. The graph drawing is the spatial or graphical re-

presentation of the graph. The tree is transformed by “divi-
de and conquer” principles, from an abstract representation
T (V,E) into an arrangement of geometric objects (subtrees)
enclosed in a multi-dimensional space called the drawing spa-
ce. A tree T (V,E,δ) usually incorporates information regarding
the length (δ) or extent of an edge as an additional variable
defined by the genetic or protein distance between two no-
des. In the case of majority-rule consensus trees (MRC) trees
(3) this variable is defined by the numbers that correspond to
consensus values defined by all groups occurring more than
a certain percentage level. There are essentially two types of
phylogenetic trees, rooted and unrooted (4). Rooted trees are
“n-ary” trees where there is a specially designated node (the
root) that is the common ancestor for the remaining nodes in
a hierarchy of parents and children (a tree is “n-ary” if every
internal node has no more than “n” children). Nodes are par-
titioned into subtrees where the level of a node is defined by
letting the root at level zero. Note therefore that a node at level
“l” has children at level (“l”+1). The number of subtrees of
each node is called its degree, and the maximum degree of all
nodes is called the degree of the tree. The degree of a node
(a subtree) is usually defined by letting the OTUs at degree
zero. Unrooted trees represent the branching order, but do not
indicate the root or location of the last common ancestor. With
the recent explosion in the amount of genomic data available,
and exponential increases in computing power, biologists are
currently able to consider larger scale problems in phylogeny.
That supposes the construction of evolutionary trees on hun-
dreds or thousands of taxa. When working with trees contai-
ning more than 50 OTUs some graphical problems arise in the
interpretation of large trees; leaves overlap and font sizes are
usually too small to be easily read. Consequently, trees must
be magnified or expanded to be clearly interpreted. Graphical
representations of phylogenetic trees usually need certain mo-
difications and decorations that require the use of additional
image editors. With the aim to obtain an editor capable of han-
dle, edit, and decorate all kinds of phylogenetic trees we have
designed Phylograph.

OVERVIEW

System
Phylograph is a Java application. This means that the tool

runs on personal computers (PCs) and workstations as a stan-
dalone program. The Model View Controller “MVC”; a pro-
gramming pattern to maintain the independence and visualiza-
tion of data was used to divide the application into three layers
- Model, View and Controller-.

Phylograph: A multifunction Java editor for handling
Phylogenetic trees
Lloréns, C.1,2 Futami, R. 1 Vicente-Ripolles, M. 1,3 and Moya, A.2,4
1 - Biotechvana, Valencia, Spain
2 - Instituto Cavanilles de Biodiversitat i Biología Evolutiva Universitat de València, Spain
3 - Departament de Sistemas Informátics i Computació Universitat Politécnica de València
4 - CIBER de Epidemiología y Salud Pública (CIBERESP), Spain

Bi techvana

Corresponding author: carlos.llorens@biotechvana.com

Availability: Available online February 1, 2008. Phylograph is distributed under the terms of the Biotechvana Private Source License (URL 1).

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 2http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

The model layer contains the program’s logic and execu-
table functions. The view layer defines the graphical user’s
interface and presents all visual elements in a main window
(buttons, lists, text-fields, etc). The controller layer provides
the connection between the other two layers.

Functions

As shown in Figure 1, Phylograph allows user to manage
tree description up to 1000-1200 leaves via a control panel

that incorporates a wide set of options summarized in Table
1. Through the computer mouse, users can rotate and root the
tree using as outgroup a single leave or a whole branch. The
tool allows users to hide branches, generate subtrees, chan-
ge the colors of branches and OTUs, etc. Users can also use
Phylograph to decorate the tree with dynamic labels and brac-
kets that may be dragged or resized (see the Section below,
“Empirical example”). All implementations can be saved as a
project to improve or modify the decoration and/or informa-
tion background of the tree.

Figure 1. Phylograph´s control panel.

 Table 1: Phylograph functions
1.	 Open a tree file; save the tree as a project; re-edit the project; exit
2.	 Choose size, type of fonts and colors for OTUs, labels, bootstrap values, links and

attachments
3.	 Export the tree as an image (in png format); as a postcript file; and as a HTML

format. This format combines an HTML file with a png file where each OTU
depicted in the tree may incorporate a link to other HTML files

4.	 Import, export and edit a list of information attachments specifics of each OTU
(for instance scientific name), the list may be written and modified by users in a
plain file

5.	 Import, export and edit a list of online addresses (for instance genbank accessions)
that specifically link each OTU to other files and databases. This function is only
available when generating HTML outputs, the list may be written and modified in
a plain file

6.	 Create and save cluster annotations and decorations
7.	 Compare two trees each one occupying half of the screen
8.	 Help, this manual
9.	 Open a treefile
10.	 Open a project file
11.	 Save a treefile project
12.	 Horizontally expand a tree
13.	 Horizontally compress a tree
14.	 Vertically expand a tree
15.	 Vertically to compress a tree
16.	 Expands the entire tree
17.	 Compress the entire tree
18.	 Fit the tree in the window
19.	 Move the tree right
20.	 Move the tree left
21.	 Move the tree up
22.	 Move the tree down
23.	 Shows or hide bootstrap values upper to a given number (by default zero).
24.	 Create and save cluster annotations and decorations
25.	 Invert the tree
26.	 Depict the tree as a radial tree
27.	 Depict the tree as a rectangular phenogram
28.	 Depict the tree as a rectangular cladogram
29.	 Depict the tree as a slanted cladogram
30.	 Depict the tree as a phylogram

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 3http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

Methodology
There are essentially two concepts for achieving drawings

of phylogenetic trees, rooted and unrooted or radial (4). Phylo-
graph uses three algorithms to layout the graph: A rooted tree
is easy to layout by recursion (5-7) using Algorithm 1. Radial
trees are layout from the combination of Algorithms 2 and 3.
Algorithm 2 is a linear-time algorithm adapted with several
modifications from Bachmaier et al. (8). This algorithm re-
solves a radial layout that Phylograph re-visits to optimize the
amount of space needed by both small and big subtrees, using
the “equal distant wedges” algorithm summarized in Algori-
thm 3. Two examples follow:

Rooted trees: As shown in Figure 2, Phylograph visits in
preorder traversal a given tree T (N,E,δ) and takes the first
open bracket as the root (Node 0). The algorithm recursively
splits the tree into subtrees and takes the root to step forward
along the upper pathway of open brackets (nodes) in order to
detect a name or character defined by a comma (OTU J, in the
example). As the exemplified tree is thrichotomic, the algori-
thm steps backward looking for new commas (Nodes 1 and
2 respectively). From that point, the algorithm steps forward

again looking for another character defined by a comma (OTU
A). As descent is not allowed for OTUs, the next step is to
read the sibling of “OTU A” that is Node 3, which is parent
of “OTUs B” and “C”. In the next movement, algorithm 1
steps backward to reach Node 1. From that point it visits Node
4, OTU F, Node 5, OTU D, Node 5, OTU E and repeats the
process considering the subtree defined by Node 6. Finally,
tree and nodes are reordered by the degree of subtrees, and the
information concerning the topology is stored in a virtual list
with which Phylograph allows users to depict the drawing in
several formats.

Radial trees: As shown in Figure 3a, radial trees are layout
via algorithm 2, which removes the root reconsidering all sub-
tree levels to establish a new node at level zero. Then, the
program reorders subtree allocations and all vertices are assig-
ned a wedge “ω” of angular width proportional to its number
of leaves. Subsequently, Algorithm 3 re-visits each node and
swings the nodes and the leaves until the arcs of separation
between wedges are equal in symmetry and harmonic visuali-
zation (Figure 3b).

Figure 2. a) Recursive layout of a phylogenetic tree b) Reordering the tree to draw a radial tree

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 4http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

Algorithm 1. Tree layout
Input:	 Newick or other tree format

Data: δ : Edge lengths
 B : bootstrap values
 “(“ : Open parenthesis  vertices or nodes (step forward)
 L : Leaves or OTUs (any number, word, or character defined by a comma)
 “)”: Close parenthesis  vertices or nodes (step backwards)
 “,” : Vertices or leaves separator
 “:” : Bootstrap and edge length values separator
 “;” : Tree end and optional information separator
 M : Optional information concerning the tree identity (n-ary tree)

Output: Spanning tree),,(dEVT
1.	 If the input-tree is given in other format the program directly turns the tree from this format to Newick format
2.	 Read the Newick tree from the left to the right
3.	 Optional  remove the text behind the Newick tree end to delete possible commentaries, and store the tree identity (n-

ary tree)
4.	 Let first parenthesis as vertex zero (root). Then create a vertex in the drawing space and remove the first open parenthesis

and the last closed parenthesis in Newick tree

a.	 Search for colons; if colons are not found, the Newick tree has not edge lengths or bootstrap values. Then, fix
edge length values =1 for all vertices

5.	 Search recursively for next vertex in the resultant Newick subtree

i.	 Search for commas in the resultant Newick subtree.

ii.	If a comma is found; then such a subtree is a vertex.
iii.	Else, such a subtree is a leaf

iv.	Add a new vertex to the spanning tree

v.	 If the Newick tree has distances; search for the last colon; else, assign edge length = 1 to this
vertex.

1.	 If the next Newick subtree defines a vertex, then load the text behind the last closed
parenthesis. Get texts in front and behind the colon (bootstrap and edge length
values); then, remove them

2.	 If the next Newick subtree defines a leaf, store the text behind the colon (edge length);
then remove it. If the leaf name is surrounded with quotes, remove the quotes.

3.	 Assign bootstrap and edge length values to this vertex

vi.	If this vertex corresponds to a leaf, algorithm finishes for this branch (descent is not allowed for
leaves).

vii. Else, if the vertex corresponds to an internal vertex; then remove the first open and the last
closed

 parentheses of the Newick subtree; then separate inner subtrees of the same level from subtree.
viii. Repeat recursively this process with each internal vertex until reach a leaf again

6.	 Preorder traversal and set level, degree, and number of leaves of the spanning tree),,(dEVT
7.	 Allocate x, y coordinates for all),,(dEVTv∈

a.	 Let in preorder traversal, X coordinates for all v following

i.),(vuXX uv d+=
1.	 where (Xroot = 0) and)(vparentu ← .

b.	 Let Y coordinates for all v following

i.	 For leaves  in preorder traversal following knY vv ⋅=
1.	 where“n” is the number of leaf assigned to “v” and “k” an arbitrary constant

ii.	For internal vertices  in postorder traversal following
2

nv
u

YY
−

=

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 5http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

Algorithm 2. Radial layout
Input:	 rooted tree),,(dEVT

Data: δ : edge lengths
 l : vertex arrays (number of leaves or OTUs in subtrees)
 degree: number of subtrees of a vertex.
 level: vertex levels letting level zero for root.
Output: x, y coordinates for all Vv∈

1.	 Remove the root from the rooted tree),,(dEVT and reconsider subtree levels, establishing a new node at level zero.

a.	 If the degree of root equals 2 then),,(dEVT is a dichotomic; remove node 0 and let the last child of root at
level zero (drawing root); then, add the first child of the old root to drawing root. At this point, the drawing
root has degree 3.

b.	 Else, if the degree of the root is higher than 2 then),,(dEVT is a multichotomic; the last child of root is set
at level zero (drawing root) and its father (old root) is set at level one as another children of the drawing root
and all vertex levels are relabeled.

2.	 If the edge of a given vertex has negative value, let this length according to the minimum length among all tree edge

3.	 Else, if edges have zero length, the tree is),(EVT ; then let edge lengths equal 1.

4.	 In postorder traversal, identify the linearly largest chain of vertices (number of vertices), then, reorder the spanning
),,(dEVT to aesthetically equilibrate the further fold of the radial layout. Else, if there are possible equal chains choose

the first option loaded.

5.	 Allocate the coordinates of the drawing root (vertex 0) at the point (0, 0) of the drawing space with a virtual wedge of
angular 2π width.

6.	 Identify subtrees T(v); and let the number of leaves for each subtree, considering only leaves.

a.	 Leaves have a value of 1.
b.	 Vertices have a value equal to its number of descendants.

7.	 Do recursively in preorder traversal:

a.	 Assign to each subtree T(v) a wedge “ω” of angular width proportional to its number of leaves in),,(dEVT
according to:

))],,(([
))](([2

d
pw

EVTleaves
vTleaves

⋅=

b.	 Divide, proportionally, the wedge of a given inner vertex “u” among its children “v”

c.	 Allocate “x, y” coordinates for all vertices in the drawing space, according to the algorithm below and rules
1-3:

	
))sin(),(cos(),(),(),(vvuv vuyxyx ytytd ++⋅+=

1.	 If ”v” is a internal node then
2
v

v
w

y =

2.	 If “v” is a leaf and the first child of “u” then
100

v
v

w
y =  counterclockwise

3.	 If “v” is a leaf and the last child of “u” then vv wy ⋅=
100
99

  clockwise

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 6http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

Algorithm 3. Unrooted tree optimization algorithm
Input:	 unrooted tree),,(dEVT
Data:	 x, y coordinates from vertices

φ: angle of a vertex in polar coordinates
r: radius of a vertex in polar coordinates
τ: starting angle of a subtree

 	 ώ: ampleness of a wedge
Output:	 optimized unrooted tree

1.	 Starting at root, in preorder traversal, do in each vertex:
a.	 If the vertex is a node, set wedges for all visible subtrees from that node following these steps:

i.	 In preorder traversal all the subtree, get the angle formed between each vertex of that subtree and
the current working node transforming rectangular coordinates to polar by its x and y coordinates.
The rightmost and leftmost angles of a subtree are the right and left borders of its wedge. This
wedge defines a triangle of minimum area enclosing the subtree.

12 xxa −=

12 yyb −=
22 bar +=

ra=)cos(f
rb /)sin(=f

b.	 Get the angle of separation values between the left border of each wedge and the right border of the next. If
current node is the root, w3 will be the third children, else, it will be the father subtree.

LR 121 wwa −=

LR 222 wwa −=

LR 313 wwa −=

c.	 Get the mean value of that separation values. At the end, all the separation between wedges will be set to this
value.

3)(∑= aa

d.	 Get the difference between the separation value and the mean value to correct the position of each subtree.

11 aad −=

22 aad −=

33 aad −=

e.	 If the vertex is the root, it has three.
The first children subtree will be kept fixed.
Rotate second and third children subtree 1dt +vertex
Rotate third children subtree to 2dt +vertex

f.	 Else, it has two children subtrees and a father subtree. The father subtree will be kept fixed since it has been
previously optimized.
Rotate first and second children subtrees to 3dt +vertex
Rotate second children subtree to 1dt +vertex

g.	 Finally, translate polar coordinates into rectangular for graphical visualization.

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 7http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

Empirical example
In Figure 4 we summarize a number of examples of the

background of functions implemented in Phylograph:

a) Phylograph allows the user to open and fit multiple trees
into the workspace and display multiple layouts at the same
time clicking on “Window → Tile windows”. Five types of
layouts - unrooted, phylogram, slanted cladogram, rectangular
cladogram and phenogram -, are allowed.

b) Trees can be rooted at any node and/or leave simply rig-
ht-clicking the mouse and selecting the option “Set root” on
the target node or OTU. The tree is rearranged based on the
new root. The tree can be returned to its original topology rig-
ht-clicking on any node or OTU and selecting “Unroot”.

c) Phylograph also allows users to edit subtrees right-clic-
king in any node in the tree and selecting “Edit subtree”. The
new subtree is opened automatically in an individual window
and can be edited separately without affecting its original pa-
rent tree.

d) User can hide/show one or more nodes simply right-clic-
king on each node and selecting “Hide/Show node”.

e) Font and color preferences for all components of Phylo-
graph can be edited by clicking on “Font → Set default fonts”.
A graphical dialog allows users to personalize all components

(OTUs, brackets, etc) globally but also, each single compo-
nent can be colored right-clicking on it and selecting “Fonts
& colors”.

f) Phylograph shows bootstrap values and these values can
be filtered to show only values greater or equal to a minimum
value specified by the user.

g) Branches stroke color can be modified right-clicking on
a node and selecting “Set color” to highlight nodes of interest.
All branches of that node are coloured recursively by default.

h) Two default files called attachment_files” and “url_fi-
les” are available in the Phylograph subfolder “user_files” and
can be used to save and edit specific attachments and URLs
per OTU that Phylograph opens and fits in the tree in a single
step. Attachments or URLs are appended to the tree clicking
on “Attachment → Show/Hide attachment” or “Links → Add/
Remove URLs to OTUs” respectively.

i) Users can create a cluster label and save it right-clic-
king on the node representative of that cluster. Selecting
“Save cluster” a bracket and a label are subsequently drawn
on screen. Labels can be resized holding down the “Shift” key
and dragging the mouse. Each new cluster-label created can
be saved automatically in a default “cluster_file” available in
the Phylograph subfolder “user_files”. When working with
other trees based on the same clusters saved in this file, if the

Figure 3. a) Radial tree drawing. b) Unrooted tree optimization

a)
b)

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 8http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

user selects the option “Clusters → Show/hide clusters” in the
menu bar, Phylograph labels all clusters of the tree that match
with the saved cluster.

j) Right-clicking on a node and selecting “Rotate node” the
tool rotate the whole branch.

installation
Phylograph is distributed in two versions: a self-installable

executable package for Microsoft Windows platforms and a
zip package compatible with all platforms. Java applications
do not require to be installed on the computer to run as its
source code is interpreted on runtime by the Java Runtime
Environment previously installed on the computer but we also
provide the Windows installer which automatically creates
shortcuts to the application. For executing the Windows ins-
taller version, simply double-click on the installer and follow
instructions during installation. This process automatically
generates desktop and start menu shortcuts. To execute the
java version of the software, open a command-line interface;
locate the application folder named ‘phylograph’; and fina-
lly, type ‘java phylo.Main’. To open a command line interface
in Windows systems press the taskbar’s ‘Start’ button; select
‘Run…’; type ‘cmd.exe’ and accept.

Figure 4. a) Available layouts. b) Rooting trees right-clicking with the mouse

a)

b)

requirements
The software version is a Java application. This means that

the tool runs on most PCs as a standalone program. Make sure
before installing the tool that a Java Runtime Environment
(JRE) is previously installed on your computer. A JRE can be
downloaded and installed from Sun Microsystems’ web site at
URL 2. This application requires a version 6 update 2 of the
JRE to run. To know if a JRE is currently installed on your
system, click “Start”, then select “Run”, type “cmd” to open
a command-line window and, finally, type “java -version” to
know the current version installed on your computer. The pro-
cess is show in Figure 6. If an error message is prompted, it
means that a JRE is not properly installed on your computer.

Concluding remarks
Phylograph was developed by us when dealing with the

first version of the Gypsy database project (9). Applicability
of this tool was inspired in other software such as TreeView
(10), Drawgram/Drawtree (URL 4), and Baobab (11), etc.
However, the required tree editor we were after was expec-
ted to have the capability to handle, edit, root, decorate and
save graphical representation of large trees, “easy and fast”.
This first version of Phylograph is remarkable in these two
functions, and indeed provides a wide background of other
functions that make of Phylograph, a powerful tool in the han-
dling of any kind of tree.

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 9http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

Figure 4 (continuation). c) Subtrees´ edition. d) Hide/Show one or more nodes. e) Font and color editor

c)

d)

e)

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 10http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

Figure 4 (continuation). f) Bootstrap values. g) Setting node stroke color. h) Attachments and URL files i) Creating and drawing clusters. j) Rotating a node

f) g)

h)

i)

j)

B
io

te
ch

va
na

 B
io

in
fo

rm
at

ic
s

page number not for citations purposes 11http://www.biotechvana.com

Biotechvana Bioinformatics, Collection 2008. Software: Phylograph 1.0. ISSN 1988-7957

2008 © Biotechvana , Spain. All rights reserved.

Figure 5. Checking the Java Runtime Environment installation.

URLs

Literature
1. Maddison,D.R., Swofford,D.L. and Maddison,W.P. (1997) Syst. Biol., 46,
590-621.

2. Sugiyama,K. (2002) World.Sci.Pub.Co.Pte.Ltd, Pittsburg.

3. Margus,T. and McMorris,F.R. (1981) Bull. Math. Biol., 43, 239-244.

4. Carrizo,S.F. (2004) Asia-Pacific Bioinformatics Conference (APBC
2004).

5. Shoenfield,J.R. (2000) A K Peters (Ed).

6. Causey,R.L. (2001) Jones & Bartlett (Eds.).

7. Cori,R., Lascar,D. and Pelletier,D. (2001) Oxford University Press.

8. Bachmaier,C., Brandes,U. and Schlieper,B. (2005) In Deng and D.Du :
(ed.), pp. 1110-1121.

9. Llorens,C., Futami,R., Bezemer,D. and Moya,A. (2007) (2008) Nucleic
Acids Research (NAR) 36 (Database-Issue):38-46

10. Page,R.D. (1996) Comput. Appl. Biosci., 12, 357-358.

11. Dultier,J. and Galtier,N. (2002) Bioinformatics, 18, 292-293.

1. Private source license: http://biotechvana.uv.es/bioinformatics/main.php?document=terms_pcl
2. Newick: http://evolution.gs.washington.edu/phylip/newicktree.html
3. Sun Microsystems: http://www.java.com
4. Phylip: http://evolution.gs.washington.edu/phylip.html

acknowledgments
We thank Rachel Epstein for language revision and the Ser-

vei Central de Suport a la Investigació Experimental (SCSIE)
at UVEG for technical support. Biotechvana Bioinformatics
has been awarded the NOVA 2006 by IMPIVA and Conselle-
ria d`Empresa, Universitat I Cìencia of Valencia. The research
has been partly supported by grants IMCBTA/2005/45, IMI-
DTD/2006/158 and IMIDTD/2007/33 from IMPIVA, and by
grant BFU2005-00503 from MEC to AM.

Sponsors

UNIÓN EUROPEA
Fondo Europeo de Desarrollo Regional
Una manera de hacer Europa

